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Abstract

Objective: To compare weighted averaging and artifact-rejection to normal averaging in the detection of steady-state responses.

Methods: Multiple steady-state responses were evoked by auditory stimuli modulated at rates between 78 and 95 Hz. The responses were

evaluated after recording periods of 3, 6 and 10 min, using 5 averaging protocols: (1) normal averaging; (2) sample-weighted averaging; (3)

noise-weighted averaging; (4) amplitude-based artifact-rejection; and (5) percentage-based artifact rejection. The responses were analyzed in

the frequency domain and the signal-to-noise ratio was estimated by comparing the signals at the modulation-frequencies to the noise at

adjacent frequencies.

Results: Weighted averaging gave the best signal-to-noise ratios. Artifact-rejection was better than normal averaging but not as good as

weighted averaging. Responses that were not signi®cant with normal averaging became signi®cant with weighted averaging much more

frequently than vice versa. False alarm rates did not signi®cantly differ among the protocols. The advantage of weighted averaging was

especially evident when stimuli were presented at lower intensities or when smaller amounts (e.g. only 3 or 6 min) of data were evaluated.

Weighted averaging was most effective when the background noise levels were variable. Weighted averaging underestimated the amplitude

of the responses by about 2%.

Conclusion: Weighted averaging should be used instead of normal averaging for detecting steady-state responses. q 2001 Elsevier

Science Ireland Ltd. All rights reserved.
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1. Introduction

Sensory evoked potentials (signals) recorded from the

human scalp are usually unrecognizable in the background

EEG (noise). Averaging is commonly used to increase the

signal-to-noise ratio so that evoked potentials can be

detected and measured. If (i) the signal remains constant

from trial to trial, (ii) the noise on any one trial is uncorre-

lated with the noise on other trials, and (iii) the noise statis-

tics remain stationary from trial to trial, averaging increases

the signal-to-noise ratio by a factor equal to the square root

of the number of trials averaged. If the noise varies from one

trial to the next, averaging is less effective. Two techniques

can then be used to improve the process. The ®rst is to reject

from the averaging those trials wherein the noise is higher

than some criterion ± `artifact-rejection' (Picton et al., 1983;

Pantev and Khvoles, 1984). The second is to weight the

recorded data according to its variance prior to summation,

and then to divide by the sum of the weights ± `weighted

averaging' (Hoke et al., 1984; LuÈtkenhoÈner et al., 1985).

Steady-state responses occur when the frequency consti-

tuents of a response are stable in amplitude and phase

(Regan, 1989). These responses are usually evoked by peri-

odic stimuli and measured at the frequency of stimulation or

one of its harmonics. Although the responses are most effec-

tively measured in the frequency-domain, the time-domain

waveforms are often averaged prior to conversion to the

frequency-domain. Dobie and Wilson (1994) showed that

weighted averaging improved the detection of auditory

steady-state responses to 40-Hz stimuli compared to normal

averaging.

Our present paper investigates the use of weighted aver-

aging for recording auditory steady-state responses at faster

stimulus rates (78±95 Hz), and compares weighted aver-

aging to artifact-rejection. We used two kinds of weighting

± one based on the variance of the time-domain waveform

(`sample weighting', i.e. the whole sample including both

the responses and the noise) and the other based on the

power in the spectrum but excluding the power at the signal

frequencies (`noise weighting'). In addition we used two

kinds of artifact rejection ± one based on an absolute ampli-
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tude criterion and the other based on a percentage of the

trials with the highest amplitudes. We based both the

weighting factors and the artifact-rejection criteria on the

frequencies in the recorded data (70±110 Hz) that were

close to the response frequencies.

2. Methods

2.1. Steady-state responses

We recorded the steady-state responses using the

MASTER system (John and Picton, 2000; see also

www.hearing.cjb.net). The system presented 8 simultaneous

tones, which were modulated at rates between 78 and 95 Hz,

using either amplitude-modulation (AM) or mixed modula-

tion (MM). In MM both amplitude-modulation and

frequency-modulation occur at the same modulation rate

and therefore produce a single steady-state response. The

stimuli are described in greater detail in previous papers

(e.g. Cohen et al., 1991; Lins et al., 1996; John and Picton,

2000; 2001). For the purpose of this paper all that the reader

needs to know is that the stimuli were periodic and contin-

uous.

Responses were recorded between Cz and the neck with

an AD conversion rate of 1000 Hz. An electrode placed over

the left clavicle served as ground. The analog ®lter bandpass

for recording these data was 1±300 Hz. Epochs of 1024 data

points (1.024 s) were rejected if the amplitude at any point

in the epoch exceeded ^80 mV. As well as evaluating the

data on-line, the MASTER system stored the data in contin-

uous disk ®les. The stored data were analyzed off-line using

MATLAB programs. Sixteen individual data epochs of

1024 points each were collected and linked together into a

sweep lasting 16.384 s. As each sweep was completed, it

was added to a running average, and the ®nal average sweep

was transformed into the frequency domain by means of a

fast Fourier transform (FFT).

The data set contained two recording conditions during

which subjects with normal hearing were presented with 8

different stimuli (binaural stimulation, 4 to each ear) all of

which were either AM or MM (John et al., 2001). Each of

the two conditions contained 3 separate recordings (12

sweeps each), which were obtained at each of 3 intensities

(30, 40 or 50 dB SPL). Since both AM and MM responses

should be similarly affected by the averaging protocols, we

collapsed the data across stimulus type, ear of presentation,

and carrier-frequency. We evaluated the responses at each

intensity after combining 1, 2 and 3 recordings, i.e. after 12,

24 and 36 sweeps. This was equivalent to evaluating the

responses after 3.2, 6.4 and 9.6 min of recording. This

approach allowed us to examine the effects of weighted

averaging and artifact-rejection as the analysis included

increasing amounts of data (and decreasing amounts of

background noise). Twenty-two separate recording sessions

were analyzed giving us 178 separate recordings.

Since most of our subjects were able to sleep during the

recording period, the noise levels were quite low. The data

were only occasionally contaminated by high noise due to

movement or ongoing activity of the scalp-muscles.

However, some subjects awoke more frequently during

the recording period or tended to make movements more

than others. Even a relatively small duration of high noise

can cause responses, that were signi®cant early during the

recording, to become non-signi®cant at the end of the testing

period.

2.2. Averaging protocols

2.2.1. Protocol 1 ± normal averaging

Sweeps were formed by concatenating 16 adjacent

epochs of data. An average sweep was created by summing

together N individual sweeps and dividing these values by

N.

2.2.2. Protocol 2 ± sample-weighting

The weighting factor was based upon the frequencies near

those of the responses, rather than upon the higher-ampli-

tudes which occur in the lower frequencies of the EEG.

Accordingly, we initially ®ltered each sweep of data using

a digital ®rst-order Butterworth ®lter with a bandpass of 70±

110 Hz applied in both forward and backward directions

(giving a ®nal ®lter slope of 12 dB/octave) to prevent

phase-distortion. Each data epoch (1.024 s) within a ®ltered

sweep (16.384 s) was then weighted by dividing all the

values in the epoch by the estimated variance of that

epoch. As in the case of normal averaging, the weighted

epochs were linked together to form sweeps, and the sweeps

were then added together to form a summed sweep. Each

epoch of the ®nal summed sweep was then divided by the

sum of the weights of the epochs that had been combined to

form that particular epoch. The formulae (adapted from

LuÈtkenhoÈner et al., 1985) were as follows:

a�i� �
XN
j�1

wjxj�i� �1�

where a is the weighted average waveform across the time-

points (i) of the epoch, N is the number of epochs being

summed together, and wj is the weighting factor for the jth

epoch:

wj � j22
j �

XN
k�1

j22
k �21 �2�

where j 2 is an estimate of the variance of the epoch:

j 2
k � �

XM
i�1

x2
i �=M �3�

where M is the number of points in the epoch and the mean

of the epoch was zero because of the ®ltering.
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2.2.3. Protocol 3 ± noise-weighting

In this process, each un®ltered epoch was transformed to

the frequency-domain using an FFT. We then computed the

average power between 70 and 110 Hz after removing the

power at the 8 frequencies at which responses occurred (and

4 other control frequencies). Whereas sample-weighting

was based on both the signal and the noise, this noise-

weighting protocol was based only on the noise and was

uncontaminated by any signal. The time-domain epoch

was then weighted and concatenated with the preceding

epochs to form sweeps and the ®nal average sweep

computed as was done for the sample-weighted average.

2.2.4. Protocol 4 ± amplitude-rejection

In the fourth protocol we used ®xed amplitude-level for

rejecting trials from the averaging process. Epochs in which

the amplitudes of the un®ltered data had exceeded ^80 mV

had already been rejected. This protocol (and the next)

rejected further epochs on the basis of their amplitudes

within the 70±110 Hz frequency-range. The sweeps were

®ltered (as described for the sample-weighting protocol)

and then the root-mean-square value of the waveform was

calculated for each epoch. An epoch was rejected if this

value exceeded 1.8 mV. This value was chosen after visually

examining histograms of the noise levels of a large subset of

recordings and selecting the point at which the values

appeared to deviate from a normal distribution. If an

epoch of data was rejected, its place was taken by the next

acceptable epoch. Although the rejection criterion was

based on the amplitudes of the ®ltered data, un®ltered

data were used for averaging. The ®nal sweep was averaged

on an epoch-by-epoch basis since the number of epochs

later in the sweep could be one less than at the beginning

of a sweep. For example, if the total number of recorded

epochs was 192 (suf®cient for 12 full sweeps), and if 30 of

these were rejected, the ®nal sweep would be the sum of 11

for the ®rst two epochs and the sum of 10 for the subsequent

epochs.

2.2.5. Protocol 5 ± percentage-rejection

The ®nal method was the same as that described for

amplitude-rejection, except that we varied the criterion for

artifact-rejection for each recording so that the 25% of the

epochs with the highest root-mean-square values were

rejected. This protocol required calculating the root-mean-

square values for all epochs, determining the 25% criterion

and then only including those epochs under this criterion in

the ®nal average sweep.

2.3. Evaluation of the signal-to-noise ratio

The amplitude spectrum of the ®nal sweep showed the

steady-state responses at the frequencies equal to the modu-

lation rates of the carrier-frequencies. An estimate of the

background noise was obtained from frequencies where

no stimulus occurred. We estimated the signal-to-noise

ratio by comparing the power at each stimulus-frequency

to the power at 120 nearby frequencies (60 above and 60

below the stimulus-frequency). Since the spectra were

derived from a sweep lasting 16.384 s, power measurements

were available at a resolution of 1/16.384 or 0.061 Hz. The

noise estimates therefore came from 3.7 Hz (i.e. 0:061 £ 60)

above and below the frequency at which the steady-state

signal appeared. The signi®cance of this ratio can be

assessed through the F-distribution with 2 and 240 degrees

of freedom (Zurek, 1992; John and Picton, 2000). Prior to

statistically comparing these ratios across the different

protocols, we normalized the ratios by taking their square

root, effectively using an amplitude-based rather than

power-based signal-to-noise ratio (SNR). In addition to

checking the responses at the stimulus-frequencies, we

also evaluated the signi®cance of the responses at 4

`control' frequencies at which no stimuli occurred to obtain

an estimate of false positive rates for each averaging proto-

col.

2.4. Statistical analyses

The effects of the different protocols on the signal-to-

noise ratios were assessed using an ANOVA with repeated

measures across subjects. We used a 3-way ANOVA (proto-

col X time X intensity). The time variable was equivalent to

the number of sweeps available for analysis (12, 24, 36

sweeps) although in the rejection protocols, the number of

sweeps actually used in the analysis was reduced. Since

occasional data were missing, the degrees of freedom

were reduced. Greenhouse±Geisser corrections for the prob-

ability levels were used when appropriate.

We calculated a rough measure of the positive skewness

of the distribution of the epoch-amplitudes by dividing the

difference between the 90th percentile and the median by

the difference between the median and the 10th percentile.

We then correlated this measure of the `noisiness' of the

recording with the SNR improvement caused by the sample-

weighted averaging (a ratio of the SNR for weighting to the

SNR for normal averaging) using a Pearson product-

moment correlation coef®cient.

Finally, we assessed the effects of the protocols upon the

incidence of signi®cant responses using x 2 statistics. To test

that incidences were equal (e.g. that the number of

responses becoming signi®cant was the same as the number

losing their signi®cance), we used simple observed-minus-

expected calculations. To compare incidences between

protocols, we used 2 £ 2 contingency tables with appropri-

ate adjustments of the x 2 calculations.

3. Results

3.1. Illustrative data

Figs. 1 and 2 show data recorded from two recording

sessions in one subject. Fig. 1 shows the histograms of the
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root-mean-square amplitudes for the ®ltered epochs (70±

110 Hz). The data from the ®rst recording session (on the

left) contained epochs that were intermittently contaminated

with high-amplitude noise (arrows). The distribution is

skewed toward the higher amplitudes. The subject was

more consistently quiet during the second recording. The

histogram shows that the epoch amplitudes are normally

distributed, Fig. 2 displays the steady-state responses in

the frequency-domain for 3 of the protocols for the two

recording sessions with the epoch amplitudes shown in

Fig. 1. Both sample-weighting and amplitude-rejection

increased the number of signi®cant responses (indicated

by the ®lled triangles) compared to normal averaging in

the ®rst recording session (left). The 3 protocols performed

similarly for the second session (right).

3.2. Signal-to-noise ratios

Fig. 3 shows the average signal-to-noise ratios after

analyzing the equivalent of 12, 24 or 36 recordings

(collapsed across intensity level) for the 5 different aver-

aging protocols. In relation to the major experimental

hypothesis, the ANOVA showed a signi®cant main effect

of averaging protocol (F � 20:4; d:f: � 4; 72; P , 0:001).

As expected, the signal-to-noise ratio was greater after a

longer period of analysis (F � 95:5; d:f: � 2; 36;

P , 0:001) and at higher intensity (F � 22:5; d:f: � 2; 36;

P , 0:001). There were signi®cant interactions between

protocol and time (the protocol effects being larger after a

longer period of analysis) and between intensity and time

(the intensity effects being larger after a longer period) but

the other interactions were not signi®cant. Post hoc evalua-

tions for the protocol effect showed that sample-weighting

M.S. John et al. / Clinical Neurophysiology 112 (2001) 555±562558

Fig. 2. Weighted averaging and artifact rejection. This ®gure shows the responses obtained during the two recording sessions described in Fig. 1. The responses

are plotted in the frequency domain for 3 of the analysis protocols. In the ®rst recording session where there were occasional high-noise trials, both sample-

weighting and amplitude-rejection (at 1.8 mV) improved the signal-to-noise ratio and increased the number of responses recognized as signi®cant (®lled

triangles as opposed to open triangles). The average amplitudes (A) and signal-to-noise ratio (SNR) across the 8 stimuli are given together with the graphical

plot of the spectrum. In the second recording session (right column), all 3 protocols performed similarly.

Fig. 1. Variation in noise levels over epochs. This ®gure shows the analysis

of two recording sessions from the same subject, presented with the same

set of stimuli (eight MM tones at 50 dB SPL). The sessions were analyzed

separately, rather than cumulatively as in the data for the statistical analysis,

to provide a comparison of the analysis protocols with all things constant

(subject, stimuli, recording time) except the noise in the recordings. The

®gure shows histograms of the amplitudes of the recorded data in the

epochs for the two recording sessions. The ®rst recording contained occa-

sional epochs with high levels of noise (arrows). The second recording did

not contain any high-noise trials.



signi®cantly and consistently provided higher signal-to-

noise ratios than all of the other protocols (P , 0:01 for

noise-weighting; P , 0:001 for the others). Noise-weight-

ing was signi®cantly better than the artifact-rejection proto-

cols and normal averaging. Neither of the artifact-rejection

protocols was better than normal averaging after the shortest

period of analysis but both became better after the second

and third time period.

The amount of increase in the signal-to-noise ratio

brought about by the sample-weighting protocol was signif-

icantly correlated with the noisiness of the recordings as

assessed using our rough measure of the positive skewness

for the epoch histograms (r � 0:43, t � 27:3, d:f: � 57,

P , 0:001).

3.3. Amplitudes

Fig. 3 also demonstrates that the amplitude of the

responses varied signi®cantly with protocol (F � 18:5;

d:f: � 4; 72; P , 0:001). Post-hoc testing showed that the

amplitude with the sample-weighting protocol was smaller

by about 10% compared to the amplitude with the other

protocols. The increase in the signal-to-noise ratio with

sample-weighting was therefore due to a larger decrease

in the noise than in the signal. The amplitude showed the

expected increase with increasing intensity (F � 77:9;

d:f: � 2; 36; P , 0:001). There was also a decrease in the

estimated signal amplitude with increasing time for analysis

(F � 5:5; d:f: � 2; 36; P , 0:05).

3.4. Response detection

When the signal-to-noise ratio increases, more responses

can be recognized as signi®cantly different from noise. The

number of responses which shifted from non-signi®cant to

signi®cant (using a P , 0:05 criterion) and vice versa when

using the weighting or rejection protocols rather than

normal averaging are shown in Table 1. A total of 339

responses became signi®cant while 74 that were signi®cant

became not signi®cant (x 2� 170.0, d:f: � 1, P , 0:001).

Each of the protocols showed signi®cantly more responses

becoming signi®cant than losing signi®cance. The two

weighting conditions were not signi®cantly different from

each other but were signi®cantly better than the two artifact

rejection protocols (x 2� 14.6, d:f: � 1, P , 0:001). In
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Table 1

Detection of signi®cant responsesa

Number of sweeps 12 24 36

Intensity Protocol S! N N! S S! N N! S S! N N! S

30 dB SPL SW 1 13 1 23 3 13

NW 1 17 1 20 3 9

AR 0 6 1 12 3 5

PR 5 5 6 14 5 11

40 dB SPL SW 2 12 1 12 0 15

NW 5 11 3 13 0 14

AR 0 8 1 9 1 6

PR 2 9 2 10 1 8

50 dB SPL SW 2 13 0 3 1 4

NW 2 13 0 4 2 4

AR 4 7 1 1 4 1

PR 8 10 0 3 2 1

a This table shows the number of responses that became either signi®cant (N! S) or insigni®cant (S! N) by applying the weighted averaging or artifact-

rejection protocols compared to normal averaging for the ®rst data set. The protocols are sample-weighting (SW), noise-weighting (NW), amplitude-rejection

(AR) and percentage-rejection (PR). The total number of responses detected as signi®cant with normal averaging increased with intensity and with the number

of sweeps analyzed. The number of signi®cant responses (out of a possible 176 ± 8 stimuli, 22 recording sessions) was 62 (35%) at 30 dB after 12 sweeps and

157 (89%) at 50 dB after 36 sweeps.

Fig. 3. Signal-to-noise ratios and signal amplitudes. The left graph shows

the increase in the signal-to-noise ratio (SNR) obtained using each analysis

protocol after the equivalent of 12, 24 and 36 sweeps were analyzed. The

data have been collapsed across stimulus intensity. A clear advantage

emerges for the weighting protocols over normal averaging with artifact

rejection falling between. The right graph shows the estimated signal ampli-

tude. This decreases slightly with increasing time and is consistently smal-

ler for the sample-weighting protocol than the others.



general, the number of responses becoming signi®cant is

larger with weighted averaging than with artifact-rejection,

is larger when fewer sweeps have been analyzed (i.e. when

the noise is still high) and is larger when the intensity is low

(i.e. when the responses are smaller).

The rate of false positive results was assessed by deter-

mining the signi®cance of measurements at 4 frequencies

where there were no stimuli. The overall rates on the ®rst

data set were 4.3, 6.3, 5.3, 5.8 and 5.2% for the protocols 1±

5, respectively. None of these rates were signi®cantly differ-

ent from the expected rate of 5% (e.g. for the sample-

weighting data, x 2 � 2.87, d:f: � 1, 0:05 , P , 0:10).

However, the difference between rates for sample-weight-

ing (protocol 2) and normal averaging (protocol 1) was

borderline signi®cant (x 2� 3.72, d:f: � 1, P � 0:054).

When we examined the rates for each of the 4 control

frequencies tested in the sample-weighting protocol, we

found that the greatest rates occurred at the lowest and high-

est of the control frequencies (75 and 105 Hz).

4. Discussion

The results show clearly that weighted averaging and

artifact-rejection improve the signal-to-noise ratio

compared to normal averaging when recording human audi-

tory steady-state responses to multiple stimuli presented at

rates between 80 and 100 Hz. The improvement in the

signal-to-noise ratio with weighted averaging varies with

the positive skewness of the distribution of the root-mean-

square amplitudes of the epochs being analyzed. Weighted

averaging has little effect when the noise-distribution is not

skewed.

Weighted averaging protocols were also signi®cantly

better than artifact-rejection protocols. This depends upon

the distribution of the noise from epoch to epoch. If the

noise were consistently either very large or very small, the

protocols would probably perform similarly, since the high-

noise trials would be reduced by the weighting to an extent

that their contribution to the ®nal result would be the same

as if they were rejected. However, this does not usually

occur when recording auditory steady-state responses. In

this case, the noise is often more widespread in its ampli-

tude-distribution and weighted averaging performs better

than artifact-rejection. For our particular data set, epochs

with very high amplitude noise had already been rejected

prior to weighting or further artifact-rejection.

In general, epochs that are rejected from averaging by

rejection protocols would be those that are most attenuated

by the weighting protocols. However, rejection protocols

often operate on the basis of different rules than the variance

of an epoch. For example, many rejection protocols are

based on the maximum amplitude within an epoch. In this

case, weighted averaging and artifact rejection might have

differed more than they did in the present study.

One of the dif®culties with artifact-rejection is selecting

which trials to reject. We used two approaches ± rejecting

epochs with amplitudes higher than an absolute criterion,

and rejecting the epochs with the highest amplitudes relative

to that particular recording session. In both cases we calcu-

lated the amplitudes after ®ltering the data to eliminate

frequencies irrelevant to the signals we were seeking.

Rejecting data on the basis of the EEG amplitudes at the

lower frequencies is not optimal when evaluating the audi-

tory steady-state responses. MuÈhler and von Specht (1999)

suggest sorting the recorded epochs from low to high noise-

amplitudes and then averaging the trials in order of the

amount of noise until the signal-to-noise ratio of the record-

ing starts to decrease when additional trials are included.

This elegant approach works well when a set number of

recorded epochs have been collected and the computer

performs an of¯ine analysis, but would be computationally

very demanding if used online. Weighted averaging has a

clear advantage over this approach and over the percentage-

rejection procedure (our protocol 5) in that in can easily be

performed online.

Weighted averaging requires choosing a weighting

factor. The variance of a recording epoch is most commonly

used. We restricted the variance estimate to the frequency-

range that we were interested in (70±110 Hz) rather than the

frequencies that we recorded (1±300 Hz). The contribution

of the signal to this variance may be removed so that the

weighting is only based on noise. Gerull et al. (1996)

proposed a nice technique of subtracting one epoch from

another to eliminate the signal and leave an estimate of the

noise for the paired epochs (cf. the (^) reference of Schim-

mel, 1967). Eliminating the response prior to determining

the weighting factor is easier for a steady-state response

than for transient responses since one just has to eliminate

a speci®c component (or set of components) from the spec-

trum.

Dobie and Wilson (1994) found that eliminating the

signal from the estimate used to determine the weighting

factors did not improve the bene®cial effect of the weight-

ing. This is probably related to the low signal-to-noise ratio

in unaveraged recordings of the auditory steady-state

response. If the signal were large and/or variable, it would

be worthwhile trying to eliminate it before determining the

weighting factor. For the auditory steady state responses the

signals are small and the overall variance of the epoch is not

signi®cantly affected by the presence or absence of the

signal. For our data, sample-weighting and noise weighting

should therefore be roughly equivalent in terms of their

effect. However, sample-weighting protocol is computa-

tionally less demanding than the noise-weighting protocol.

Unlike Dobie and Wilson (1994), our noise-weighting

protocol did not perform quite as well as the sample-weight-

ing protocol in increasing the signal-to-noise ratio. Since the

two techniques performed similarly in improving response-

detection (Table 1), the difference in the signal-to-noise

ratio was unexpected. The main reason was that we ®ltered

the data prior to the analysis in the sample-weighting proto-
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col. This was necessary since we wished to calculate a

weighting factor based on the frequencies in the recording

that were near the frequencies of stimulation rather than the

higher-amplitude lower frequencies present in the record-

ing. The sloping edge of the ®lter (bandpass 70±110 Hz)

near the highest and lowest response frequencies (78 and 95

Hz) would have altered the signal-to-noise ratios at these

frequencies by attenuating the energy in the adjacent bins

more than the energy at the response-frequency. This would

not have occurred for the noise-weighting since the data

were not ®ltered, and the weighting factor was determined

by an exact selection of frequencies in the spectrum.

Although it became smaller, the difference between

sample-weighting and noise weighting persisted if we

removed the ®ltering. Another possible reason for the differ-

ence stems from the fact that the FFT analysis of the epochs

(lasting only 1.024 s) had much less resolution than the

analysis of the full sweep (lasting 16.384 s). Removing

the spectral bin containing the signal response also removed

frequencies that were close to the signal. These frequencies

would be assessed as noise on the full-sweep analysis, since

they would fall into adjacent frequency bins. This effect

would be compounded by the fact that we were using multi-

ple stimuli. We limited our noise estimate to between 70 and

110 Hz. In the FFT of the full sweep (16.384 s) this would

contain 655 bins (resolution 0.061 Hz). However, in the FFT

of each epoch (1.024 s) there are only 41 bins in this

frequency range, and 12 of these would be removed (for

the 8 signals and the 4 control frequencies). Our estimate

of the epoch noise could therefore have been less accurate

than the sample-weighting estimate. However, since a post-

hoc computation of the noise-weighting data without

removing the signal frequencies did not signi®cantly alter

the results, the decreased resolution of the weighting esti-

mate for epochs could not explain the differences between

sample-weighting and noise-weighting. The average of the

spectral amplitudes is not directly related to the root-mean-

square amplitude in the time-domain waveform, since

different frequencies can partially cancel each other in the

time domain and this cancellation depends on their phases.

Whatever the differences, our time-domain weighting-factor

caused a slightly better signal-to-noise ratio than the

frequency-domain weighting-factor.

Several other weighting factors may be used instead of

the inverse of the epoch variance. Several groups (Gasser

et al., 1983; Davila and Mobin, 1992; Bezerianos et al.,

1995) have suggested using the covariance between the

epoch and the average of the other epochs in the data

set, so that the weighting is correlated with the signal

strength rather than the noise level. These procedures effec-

tively weight each epoch on the basis of how similar it is to

an estimated signal. This similarity would vary directly

with the amplitude of the signal in the epoch and inversely

with the amount of noise. The approach of weighting by

signal strength is more appropriate for recordings where

the signal is of the same order of magnitude as the noise.

Since the auditory steady state responses are signi®cantly

smaller than the noise, this approach would probably not be

helpful. The calculation of the weighting factor may also

be improved by `pre-whitening' (Gasser et al., 1983;

Davila et al., 1997). However, for the analysis of the audi-

tory steady-state responses at stimulus rates of 80±100 Hz,

where the noise is already relatively homogeneous (i.e.

white) across the frequency range of the signals (John

and Picton, 2000), pre-whitening would likely not lead to

signi®cant improvement. OÈ zdamar and Kalayei (1999)

have shown that median averaging attenuates the effects

of high-noise trials, since the median is much less affected

by outliers than the mean. However, this procedure is much

more computationally demanding for online use than

weighted averaging.

We found that normal averaging resulted in a false-alarm

rate of 4.3% that was slightly lower than the expected 5.0%

level. This result is the same as the 4.3% that we have

reported previously with other data (John and Picton,

2000). The background EEG noise falls off slightly with

increasing frequency, and this probably makes the F-test

slightly more conservative than its nominal values. The

borderline increase in the false-alarm rate with the

sample-weighting protocol compared to normal averaging

probably results from the ®ltering of the data. We used 4

control frequencies to test the false alarm rate. The lowest

and highest control frequencies (75 and 105 Hz), which

were just beyond the frequency range of the responses,

showed greater false alarm rates than the middle two

frequencies. This could have been due to the F-test using

frequency-bins that were beginning to be slightly attenuated

by the ®lter (26 dB points at 70 and 110 Hz) in its denomi-

nator. The weighting protocol did not signi®cantly change

the false-alarm rate within the range of the stimulus frequen-

cies.

Although it signi®cantly increased the signal-to-noise

ratio, our sample-weighting protocol also under-estimated

the amplitude of the responses compared to normal aver-

aging. This is an acknowledged drawback of weighted aver-

aging (LuÈtkenhoÈner et al., 1985). The amount of reduction

will depend on the range of the weighting factors used. In

our sample-weighting protocol, the reduction was larger

(approximately 10%) than could be explained by weighted

averaging. A major factor was the ®ltering used in the

sample-weighting protocol, which accounted for about 7%

of the reduction in the signal amplitude, and which mainly

affected the responses with the highest and lowest frequen-

cies. This effect could be reduced by increasing the band-

width or changing the nature of the ®lter. Compromises

have to be struck between computational time, selecting

weighting factors based on the frequencies near the

response-frequencies, and the accuracy of response estima-

tion. One approach would be to compensate the amplitudes

for the known reduction by the ®lter. A more ef®cient

approach would be to base the weighting-factor on the

®ltered data but then to weight and analyze the un®ltered
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data. This is the procedure that we currently recommend.

(Using this procedure in a post hoc analysis of our data, the

estimated signal-amplitude did indeed become only 3%

smaller with sample-weighting as opposed to normal aver-

aging.)

Another factor might also lead to the under-estimation of

the signal amplitude. It is possible that the amplitude-esti-

mate was less affected by the residual background noise

when this was signi®cantly reduced by weighted averaging.

When it is measured from a combination of signal and noise,

the signal amplitude is over-estimated by an amount that

varies with the amount of noise (Strasburger, 1987).

However, this could only explain a small part of the change.

The estimated signal amplitude decreases by about 4%

when normal averaging is based on 36 rather than 12 sweeps

(Fig. 2). With this increase in analysis time, the signal-to-

noise ratio increases much more (actual 1.65, expected 1.73

according to the square root rule) than it does when chan-

ging from normal averaging to sample-weighting (a 1.17

increase). The change in the noise level could therefore be

only a small part (perhaps 1%) of the 10% decrease in the

estimated signal amplitude with our sample-weighting

protocol. Given the effects of ®ltering and residual noise

we would estimate the reduction in the signal amplitude

due to signal averaging as about 2% (similar to the 1.5%

effect of noise-weighting).

Although it would not affect the ®ndings if one is making

a yes-no decision about whether a response is present or not,

this slight decrease in signal amplitude might cause concern

if the amplitude of the response is being compared across

conditions or between subjects. Since it will equally affect

the real and imaginary components of the response,

weighted averaging should not affect phase.

Weighted averaging attenuates the effect of high-noise

epochs on the ®nal response. Everyone who has recorded

average evoked potentials has experienced the situation

when responses that are just beginning to look signi®cant

after a period of averaging sadly vanish with the subsequent

occurrence of a few trials with higher noise. Weighted aver-

aging should prevent this from happening. Weighted aver-

aging has an advantage over other techniques, in that it can

easily be performed online.

Because weighted averaging enhances the signal-to-noise

ratio, it will detect responses more quickly than normal

averaging. In evoked potential audiometry, time is particu-

larly important when evaluating the hearing of babies or

when monitoring the integrity of the auditory system during

anesthesia. In these situations, the examiner wishes to gain

as much information as possible in as little time as possible

± before the baby wakes up and makes further testing impos-

sible, or before transient intra-operative dysfunction

becomes permanent. Weighted averaging should prove

very helpful in these clinical situations.
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