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Abstract PLS as a general multivariate method has been applied to many types of
data with various covariance structures, signal strengths, numbers of observations
and numbers of variables. We present a simulation framework that can cover a wide
spectrum of applications by generating realistic data sets with predetermined effect
sizes and distributions. In standard implementations of PLS, permutation tests are
used to assess effect significance, with or without procrustes rotation for matching
effect subspaces. This approach is dependent on signal amplitude (effect size) and,
as such, is vulnerable to the presence of outliers with strong amplitudes. Moreover,
our simulations show that in cases when the overall effect size is weak, the rate
of false positives—and to a lesser extent—false negatives, is quite high. From the
applications point of view, such as linking genotypes and phenotypes, it is often
more important to detect reliable effects, even when they are very weak. Reliability
in such cases is measured by the ability to observe the same effects supported by
the same patterns of variables, no matter which sets of observations (subjects) are
used. We implemented split-half reliability testing with thresholds based on null
distributions and compared the results to the more familiar significance testing.
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1 Introduction

Partial Least Squares (PLS) is a versatile multivariate method that has been applied
to many data types in neuroimaging, Psychology, physiology, Genetics, and Chemo-
metrics to name but a few [1,2,14]. In neuroimaging, the standard application of PLS
is PLS-correlation (PLSC, see [1]) whose computational core consists in the singu-
lar value decomposition of the correlation matrix of the variables from two matrices.
In this context, the singular vectors are called saliences and the associations between
the two data tables are explored with latent variables (LVs) computed as the projec-
tion of each table on its corresponding saliences (see, e.g., [1], for details). More
recently, researchers have been interested in investigating large scale data sets with
weak signals, as found, for example, when relating genotypes and complex pheno-
types (e.g., personality traits, body weight). For these problems, PLS methods offer
an excellent framework. However, it is difficult to interpret and validate genotype-
phenotype associations obtained by PLS because the ground truth is not known. For
this reason it is important to generate simulated data and hone the ability of PLS to
correctly detect weak but reliable signals.

More generally, PLS validation requires a simulation framework that can cover
a wide range of applications that vary in covariance structure, signal strength, num-
ber of observations and variables. In this work, we present a set of simulations
where significance testing—within the standard PLS implementation—shows a
clear propensity to Type I errors, and much more so for certain data types. PLS meth-
ods seem to be more prone to this Type I error inflation when the cross-validation
approach—used to derive the sampling distribution under the null hypothesis—
involves Procrustes rotations to project the LVs from the permuted data onto the
original LVs (as done in the current implementation of PLSC, see [2]).

It is well known that significance testing using permutation tests is essentially
amplitude driven and vulnerable to the presence of outliers ( [4]). We have found,
in practice, another weakness of PLS when it is applied to a weak correlation
structure between predictor and response variables, where one of these two data
sets has a very weak covariance structure while the other set has a very strong
covariance structure between variables (as is often the case in “brute force” ap-
proaches to genotype-phenotype associations). In such cases, the strength of corre-
lations between response variables (e.g., highly redundant behavioral measures)—
even though not necessarily related to the genes—can overpower the permutation
tests and falsely identify genotype-phenotype associations. When this is the case,
using completely random genetic data will produce similar results to the analysis
performed on real genetic data (because the analysis is driven by the other set).
Therefore, a more appropriate question then is: Can we detect associations (i.e.,
LVs) that reliably represent specific genotype-phenotype links, such that any set of
subjects would produce similar LVs with simultaneous, better-than-chance similar-
ity for both associated patterns (e.g., genotype and phenotype)?

Motivated by such examples, we designed a Monte-Carlo simulation framework,
flexible enough to mimic many realistic scenarios, with the advantage that we could
manipulate the ground truth. We also introduced a new split-half resampling frame-
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work for reliability testing, similar to [5], as an alternative to significance (null hy-
pothesis) testing within the PLS approach. We then compared results obtained with
classical PLSC analysis with and without Procrustes rotations to those obtained us-
ing split-half reliability testing.

Although the work presented here is general in nature and applies to different
data types, our starting point was the PLSC methodology as implemented in the
PLSC software package ( [2]), which focuses on neuroimaging applications. We
will therefore use terminology appropriate for neuroimaging applications, where
predictor variables are typically some sort of brain imaging data, as in [2]. Typ-
ically, subjects are split across several groups and their data are collected under
different experimental conditions. In this spirit, observations are condition specific
subject data and predictor variables are voxels. Task-PLS refers to the data driven
approach where stacked subjects voxel data are tested for group/condition mem-
bership patterns, called task effects. Seed-PLS refers to data driven analysis of the
correlation matrix between entire brain data and a (typically small) subset of voxels,
called seeds, where correlations are calculated across group and condition specific
subject data. In this case, PLS also extracts group/condition patterns in correlations
(see [1] for details).

2 Simulations

We used real data as a starting point for our simulations in order to create realistic
scenarii while manipulating effect sizes and noise sizes and distributions. These
data sets were chosen from brain imaging, behavior, and genetics to represent a
wide range of data dimensions, specifically number of observations and number of
predictor variables. These synthetic data sets were then tested with two main flavors
of PLS, data driven task-PLS and seed-PLS.

2.1 Real data sources

We used three different types of real data: electro-encephalogram, behavior, and
genetics.

2.1.1 Event related potentials (ERP) data

The first set consists of electroencephalogram (EEG) data from a total of 48 subjects
whose data were collected across 2 experimental conditions. In addition, subjects
were divided into 3 age groups, with 16 subjects in each group: Young (mean age
22 4 3 years), Middle (mean age 45 4 6 years) and Older (mean age 66 + 6 years).
For the purposes of the present work, we used 2 visual perceptual matching tasks
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from the larger study that involved 6 conditions. Visual stimuli were presented si-
multaneously in a triangular array. In the perceptual matching task (PM), subjects
indicated which of the three bottom stimuli matched the one on the top by pressing
one of three buttons. In the delayed match to sample task (DMS), the instructions
were the same as in the PM, except that the three bottom row stimuli were presented
after a 2.5s delay following the presentation of the top row stimulus.

EEG recordings from 76 electrodes were collected using BioSemi Active Two
system with a bandwidth of 99.84 (0.16 100) Hz and sampling rate of 512 Hz.
Data were recorded reference-free, but were converted to an average reference at Cz
during the pre-processing. We utilized standard preprocessing steps for ERP data
analysis. Continuous EEG recordings were bandpass filtered from 0.5 to 55 Hz.
Data from trials with correct responses were “epoched” and base-lined into [—500
2000] ms epochs with a [—500 0] ms pre-stimulus baseline. Artifact removal was
performed using Independent Component Analysis (ICA). The data were averaged
across trials for each condition separately. For our simulations we considered only
[0 500)ms time window (257 time points) of the averaged data.

This represents a scenario with a small number of subjects (48), a large number
of predictors (EEG channels x time points = 76 x 257 = 19,532), that are some-
what strongly correlated (see Figure 1A) and a small number of group/condition
dimensions (3 age groups x 4 conditions = 12).
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Fig. 1: Correlation matrices for 3 real data sets. Each matrix was derived from all
available observations. Notice the wide variety in voxel space dimensionality and
correlation strengths.

2.1.2 Genes and behavior: genetic data

Genetic and associated behavioral data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering
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(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical com-
panies and non-profit organizations, as a $60 million, 5-year public—private partner-
ship. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessments can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
Determination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials. The Prin-
cipal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center
and University of California at San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and private corpora-
tions, and subjects have been recruited from over 50 sites across the U.S.A. and
Canada. The initial goal of ADNI was to recruit 800 adults, aged from 55 to 90, to
participate in the research, approximately 200 cognitively normal older individuals
to be followed for 3 years, 400 people with MCI to be followed for 3 years and 200
people with early AD to be followed for 2 years. For up-to-date information, see
www.adni-info.org.

In the ADNI database, the genetic information of each participant is a long list
of pairs (one per chromosome) of DNA nucleotides (A, T', C, and G)—which could
occur in 2* = 16 different configurations—grouped in 23 chromosomes, amounting
to roughly 600,000 genetic markers. However, after standard preprocessing with
PLINK (pngu.mgh.harvard.edu/purcell/plink/,e.g., with a call rate
of 90% and minor allele frequency of 5%, [6]) we were left with approximately
500,000 genomic locations that show enough variability in a population. These lo-
cations of variability are called single nucleotide polymorphisms (SNPs).

Because our goal was to understand the effects of resampling-based inference
tests for PLS, we selected only some of the top reported, clinically relevant genetic
markers, consisting of 178 SNP’s. Besause the work presented here is not concerned
with data inperpretation, we skip the details of clinical relevance. Each SNP has a
major allele (e.g., A) which is the most frequent nucleotide (in a population) and
a minor allele (e.g., T; rare in the population but required to be found in at least
5% of the population to be considered worth exploring). Thus, in practice only 3
variants for each location are used: the major homozygote (e.g., AA), the minor ho-
mozygote (e.g., TT), and the heterozygote (e.g., AT). Multivariate data sets of SNPs
are most often re-coded through a process of counting the number of minor alleles.
So, in our data: O represents the major allele homozygote (e.g., AA), 1 codes for the
heterozygote (e.g., AT), and 2 represents the minor allele homozygote (e.g., TT).
In most analyses, the SNPs are treated as quantitative data since most statistical
methods used rely upon quantitative measures. Because the assumptions of a quan-
titative coding scheme seem unrealistic, we have decided to use a qualitative coding
scheme and to consider that the values 0, 1, and 2 represent three different levels of
a nominal variable and to code each possible variants with a 3 by 1 vector of binary
variables (i.e., AA = [100], AT = [010], and TT = [001]).
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The data were extracted from 756 subjects comprising three clinical groups and
each clinical group was further split by sex. This produced a total of six, approxi-
mately equally populated, groups of subjects. This pattern of data represents a data
analytic scenario with comparable numbers of observations (756) and predictors
(SNPs x variants = 178 x 3 = 528). Here, the predictor data are binary and weakly
correlated (Figure 1B). The number of group/condition dimensions is also small (6
groups based on clinical diagnosis and sex).

2.1.3 Genes and behavior: behavioral data

We extracted 6 behavioral measures from the same subjects as for the genetic data.
Once again, as the intperpretation of the behavioral data is not important for our
simulations, we skip the details pertaning to the choice of behavioral measures.
This represents a scenario with a large number of observations (756), small number
of highly correlated predictors (6 behavioral measures, see Figure 1C), and a small
number of group/condition dimensions.

2.2 Simulation of group/condition effects

We start with a real data set stacked in a standard manner as a two-dimensional
matrix X whose every row contains data for one subject (observation) in one condi-
tion ( [2]). The rows are arranged such that observations are nested within condition
blocks, which are in turn nested within group membership. From X we extracted
two parameters: the covariance matrix C of the voxel space (covariance calculated
across observations) and the group/condition specific mean signal m of the predictor
variables across the real data observations. The mean signal m is further centered
by subtracting the grand mean of all groups and conditions. To generate comparable
simulated data with a controlled number of group/condition effects, we first decom-
posed m using a principal component analysis and then rebuilt the modified signal
(denoted my) using only the first K principal components. This allowed us to con-
trol the number of expected group/condition effects. In the simulations presented
here, we chose K = 3 as the reasonable number of effects that can be expected with
this type of data. To create a simulated voxel data set similar to the real data, we
drew observations from a multivariate normal distribution with covariance C and
mean m;. However, we wanted to test how well we can detect reliable task effects
depending on the signal strength (m; amplitude across voxels) and the noise distri-
bution. For this reason, we used the signal amplitude as a scalar parameter denoted
7Y that was manipulated in order to vary the intensity of the signal as Y m;. In order
to explore the effects of noise we removed the signal from a proportion (denoted
np) of randomly selected voxels. To summarize, we designed a simulations scheme
where we controlled:

1. the number of expected group/condition effects (set to 3 for all simulations)
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2. the signal strength measured by 7, where y € {0,0.5,1,3}
3. percentage of noise-voxels (i.e., voxels for which m; = 0) measured by np,
where np € {80%,40%,10%,0%}.

2.3 Simulation of correlation effects

Once again we start with a real voxel data set X, with voxel covariance matrix C,
as above. We create simulated versions of the data by drawing observations from
a multivariate normal distribution with covariance C and zero mean vector. This
produces a matrix Y with same dimensions as the real data X. We then selected a
small set of voxels as seeds (i.e., we extracted columns of Y corresponding to the
selected voxels). Seed-PLS analyzes the correlation between Y and the seeds and
searches for the group/condition effects within the correlation structure which is
stacked by group and condition specificity in the same way as for task-PLS. In this
case, the strength of the signal reflects the strength of the correlations between the
columns of Y and the seeds. Note that the correlations are exactly 1 for the columns
corresponding to the seeds across all groups and conditions. In this scenario, we
manipulated the strength of the signal by permuting a random subset of rows of the
seed matrix, while keeping the voxel data matrix Y unperturbed. The percentage
of rows that were permuted, denoted pp, is inversely related to the strength of the
correlations: if only few rows are permuted (e.g., pp < 5%), the correlations change
only slightly; if all rows are randomly permuted (pp = 100%), all the correlations
are destroyed. In the results presented here, we tested a range of pp values with
pp € {0%,30%,60%,100%}.

3 Split-Half Reliability

The reliability of the latent variables is implemented in a split-half resampling
framework similar to [5]. Here we give a brief description for the data driven PLS
methods. The overview of the algorithm is shown in Figure 2. We start by first de-
composing the signal D (whether mean-centered group/condition mean signal in
task-PLS or correlation signal between predictors and responses in seed-PLS) us-
ing the singular value decomposition (SVD). Specifically, assuming that D is in a
group/condition by voxel format, then the SVD of D is obtained as:

DT =UsvT.

The columns of U store the left singular vectors (voxel patterns), the columns of V
store the right singular vectors (group/condition effects) and S is the diagonal matrix
of the singular values. In our framework, we will consider that a latent variable £;
comprises a matching set of right and left singular vectors (i-th column of U, and V
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Fig. 2: Diagram of the algorithm for split-half reliability testing.

respectively) and singular value (i-th diagonal element of S). In standard permuta-
tion tests, the significance of a given LV is focused on the amplitude of the singular
value. However, in split-half reliability testing we are interested in the stability of the
pairings between left and right singular vectors. Therefore, we randomly split every
group of subjects and calculated the signals D and D, by applying the same group
and condition specific averaging/correlation procedure as originally performed on
D, working with only half of the subjects. We projected the original matrices U and
V onto each half of D to obtain the corresponding half-sample matching pairings.
Specifically, we computed:

U =D/'VS™' and U,=DIVS™!
V,=D,US"! and V,=D,US”!

The correlations between projected left and right split-half patterns (i.e., correlation
between the matrices U; and U,, and the matrices V| and V,) are taken as mea-
sures of the correspondence between the voxel space and the V patterns, on one
hand, and group/condition membership and the U patterns, on the other hand. By
repeating this procedure many times, we obtain a robust estimate of split-half cor-
relations for both left and right singular vectors. Note that this procedure uses the
full sample to decompose the data structure into latent variables. This is particu-
larly important for weak signals, where a half-sample may not reveal the signal.
The purpose of the procedure is different from a standard split-half cross-validation,
where each half-sample is independently analyzed. Instead, our focus is to evalu-
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ate the reliability of the associations—captured by the LV’s—between voxel pat-
terns and group/condition effects. In other words, our main question is: Given a
group/condition effect, how reliable is the corresponding voxel pattern? Would the
same group/condition effect links with a similar voxel pattern if we were to chose
a different set of subjects? In an analogous way, given a voxel pattern (left singular
vector), we want to estimate the reliability of the associated condition/group effect.
For example, in the analysis of genotype/phenotype associations, the SVD decom-
poses the correlation matrix into latent variables, where each latent variable links
a particular weight from the SNPs with a particular weight of from the phenotype
measures. In this case, our split-half procedure tests the reliability of this link.

Ucorr null distribution (y=0) Vcorr null distribution (y=0)
20 5 71% 0 o 193%
M |
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Fig. 3: Null-distribution for pycorr and pveorr- For illustration we chose the first
LV from two ERP-type simulations of task effects. The top row corresponds to the
“no signal” scenario with ¥ = 0. The bottom row corresponds to the simulation
with the most realistic signal strength and distribution, with Y = 1 and np = 0. The
red dot marks the split-half correlation of the original un-permuted data. The red
dotted line and red percent value indicate the corresponding percentile of the null
distribution. In both scenarios, the distributions are strongly skewed towards positive
values, however the pycorr and pyeorr percentile values suggest rejection of the null
hypothesis for the realistic signal only.

It is important to notice that the distribution of the correlations between projected
split-half patterns will be skewed even in a completely random data set. After all,
the original SVD decomposition reflects the full sample, so it is not surprising that,
on the average, the distribution of the values of the correlation between split halves
is biased towards positive values (see Figure 3). To deal with this systematic bias,
we create a null distribution for the split-half correlations. This is done by randomly
permuting observations (i.e., the rows of X) and repeating the split-half correlation
estimation for each permuted data set. This allows us to estimate the probability of
surpassing the correlations from the original un-permuted data set. We denote these
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probabilities by pucorr and pyeorr and treat them as p-values that describe the stabil-
ity of voxel patterns associated with U and group/condition patterns associated with
V, respectively. In the present simulations, we performed 200 half-splits and 200
permutations to create the null distributions, and considered that a latent variable
was reliable when both probabilities were smaller than .05 (i.e., pycorr < .05 and
Pveorr < .05).

4 Results and Discussion

Each of the three real data sets were used to generate simulations for the two fla-
vors of PLS. In the case of task-PLS, simulations were designed to have exactly
3 significant LVs, however the strength of the signal captured by these LVs was
varied from no signal (y = 0) to weak signal (e.g, ¥ = 0.5,np = 40%) and strong
signal (Y = 3,np = 0%). Simulations for seedPLS were simpler, where partial per-
mutations of the seed data resulted in a reduction of the initial correlations, going
from no reduction (pp = 0%) to more reduction (pp = 30%,60%) and full reduction
(pp = 100%). For each simulation, we calculated two standard p-value estimates of
the LV significance, prot and pponrot depending on weather Procrustes rotation was
used or not. In addition, we calculated p-values of LV reliability estimates based on
split-half resampling, pucorr and pvcorr. The results are presented in Tables 1 and 2.
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Table 1: Results for task-PLS simulations. For each of the 3 data types, the sig-
nal was constructed to have exactly 3 LVs, and its strength was manipulated with
the values of the parameters ¥ and np. For each simulated data set, we computed
two standard p-value estimates of LV significance, prot and pponror depending on
weather Procrustes rotation was used or not. In addition, we calculated p-values of
LV reliability estimates based on split-half resampling, pycorr and pveorr-

Y=0 y=05 =1 ry=3
np(%) 80 40 10 0 [80 40 10 0 |80 40 10 0
Pror| 01 {03 .01 .01 .01/.01 .00 .01 .00[.00 .01 .01 .01
Prowot| 46 |35 27 20 .17|.20 .00 .00 .00|.00 .00 .00 .00
LVL | pyeorr| 34 |35 23 .17 .12].20 .01 .00 .00|.00 .00 .00 .00
Pveorr| 10 |04 .04 .01 .04[.00 .00 .00 .00]|.00 .00 .00 .00
& Pror| 41 {17 .03 .01 .01|.04 .00 .01 .00[.01 .00 .00 .01
= Prowot| 78 |29 .03 .01 .01|.03 .00 .00 .00[.00 .00 .00 .00
LV2 | pucorr| 78 |41 .08 .02 .01|.05 .00 .00 .00[.00 .00 .00 .00
Pveorr| 18 |04 02 .03 .01[.00 .00 .00 .00|.00 .00 .00 .00
Prot| 72 |62 41 34 31|35 .11 .06 .04[.01 .01 .00 .01
Prowor| 50 |34 .10 .02 .04|.03 .00 .00 .00|.00 .00 .00 .00
LV3 | pyeorr| 58 |29 .07 .01 .04]|.04 .00 .00 .00|.00 .00 .00 .00
Pveorr| 97 |90 78 .10 .07|.15 .00 .00 .00|.00 .00 .00 .00
pror| 21 |14 00 .01 .00[.02 .01 .01 .01]|.01 .00 .01 .00
Prowor| 48 |40 .13 .04 .02].14 .00 .00 .00|.00 .00 .00 .00
LVL | pyeorr| 65 | .56 .12 .04 .02]|.24 .00 .00 .00|.00 .00 .00 .00
Pveorr| 97 | .86 97 .93 95[.83 .11 .04 .04|.00 .00 .00 .00
2 Pror| 24 {29 .10 .07 .04|.14 .01 .01 .01[.01 .00 .01 .00
@ Prowot| 63 |53 .16 .04 .04|.17 .00 .00 .00|.00 .00 .00 .00
LV2 | pucorr| 34 |33 23 .15 .09].16 .00 .00 .00[.00 .00 .00 .00
Pveorr| 82 | .83 26 32 .12].12 .00 .00 .00|.00 .00 .00 .00
Prot| 55 |48 54 47 50|.14 .07 .01 .01[.00 .01 .01 .01
Prowor| 15 |20 22 21 23|.07 .01 .00 .00[.00 .00 .00 .00
LV3 | pyeorr| 47 | 40 54 41 51].08 .01 .00 .00|.00 .00 .00 .00
Pveorr| 63 |53 46 42 42[.25 .00 .00 .00|.00 .00 .00 .00
pror| 01 .00 .01 .01 .01|.01 .00 .00 .01[.02 .00 .01 .00
Prowot| 18 |17 .00 .00 .00|.20 .00 .00 .00 .18 .00 .00 .00
LVL | pyeorr| 28 |28 .00 .00 .00|.26 .00 .00 .00|.19 .00 .00 .00
. Pveorr| 17 |13 .00 .00 .00[.20 .00 .00 .00|.17 .00 .00 .00
§ Prot| 56 |51 .18 .04 26|43 .12 .05 .17[.07 .09 21 .10
E Prowot| 26 |21 .00 .00 .00|.15 .00 .00 .00|.00 .00 .01 .00
LV2 | pucorr| 23 |17 .00 .00 .00|.12 .00 .00 .00|.00 .00 .00 .00
Pveorr| 20 |16 .00 .14 .01[.07 .00 .07 .00|.00 .00 .00 .00
Proc| 91 92 71 87 74|74 78 87 72|.63 72 42 51
Prowot| 51 |51 .07 34 .10|.27 .17 28 .07].01 .00 .00 .00
LV3 | pyeorr| 31 |21 .02 21 .08].12 .02 .04 23|.01 .00 .00 .00
Pveorr| 47 | 42 07 17 01[.27 04 .08 .01].13 .00 .00 .00
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Table 2: Results for seedPLS simulations. For each of the 3 datatypes correlation
strengths were manipulated with parameter pp. For each simulated data set, we
computed two standard p-value estimates of the LV significance, pyot and pponrot
depending on wether Procrustes rotation was used or not. In addition we calculated
p-values of LV reliability estimates based on split-half resampling, pycorr and pveorr-

(%) 100 60 30 0

Pror| 00 01 .01 .00

Prowor| .15 .00 .00 .00

LVL |pycorr| 27 .00 .00 .00
Pveorr| 34 .02 01 .00

Prot| .03 .04 12 .04

Prowor| 17 24 86 .14

LV2 |pucorr| 32 06 94 .04

& pveorr| 52 30 55 .06
= Prot| 15 23 45 14
Prowot| 58 .60 88 .14

LV3 | pycorr| .12 20 81 .01
Pveorr| .85 .16 20 .21

Pror| 01 .01 .00 .01

Prowrot| 32 .01 .00 .00

LVL | pycorr| 07 .00 .00 .00
Pveorr| 96 79 .00 .00

Pror| 00 .01 .00 .01

Pnowor| 81 .01 .00 .00

LV2 |pucorr| .12 .01 .00 .00

g Pveorr| .82 .07 .00 .00
2 Prr| 12 01 .00 .00
Prowor| 84 .05 .00 .00

LV3 | pycorr| 99 32 .00 .00
Pveorr| O1 70 00 .00

Prot| 07 .00 .01 .01

Pronrot| .85 .00 .00 .00

LVL | pycorr| 91 .00 .00 .00
Pveorr| 62 22 .00 .00

Prot| 28 .00 .00 .01

Prowrot| 20 .00 .00 .00

5 LV2 |pucorr| 32 .00 .00 .00
z Pveorr| 100 .00 .00 .00
E Prot| 74 36 78 .90
Prowot| 69 02 78 .86

LV3 | pycorr| 41 05 66 41
Pveorr| 82 .02 46 26
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