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This paper presents a method for automatically detecting unusual human events on stairs from video
data. The motivation is to provide a tool for biomedical researchers to rapidly find the events of interest
within large quantities of video data. Our system identifies potential sequences containing anomalies,
and reduces the amount of data that needs to be searched by a human. We compute two sets of features
from a video of a person descending a stairwell. The first set of features are the foot positions and veloc-
ities. We track both feet using a mixed state particle filter with an appearance model based on histograms
of oriented gradients. We compute expected (most likely) foot positions given the state of the filter at
each frame. The second set of features are the parameters of the mean optical flow over a foreground
region. Our final classification system inputs these two sets of features into a hidden Markov model
(HMM) to analyse the spatio-temporal progression of the stair descent. A single HMM is trained on
sequences of normal stair use, and a threshold on sequence likelihoods is used to detect unusual events
in new data. We demonstrate our system on a data set with five people descending a set of stairs in a
laboratory environment. We show how our system can successfully detect nearly all anomalous events,
with a low false positive rate. We discuss limitations and suggest improvements to the system.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Stairs have long been the subject of study for architects and
designers [1], who attempt to build more ergonomic and safe stairs
for different public and private situations. Increasingly, stairs have
become a subject of interest for biomedical researchers, who rea-
lise that, even with perfect design, stairs are inherently difficult
for humans to navigate and their use will always lead to accidents.
The US Consumer Product Safety Commission estimates that in
2005 alone over one million people received hospital treatment
in US due to stair related injuries [2]. Older adults are particularly
susceptible to accidents on stairs due to their reduced mobility and
weaker musculoskeletal systems. This is of special concern to the
growing population of elderly people who wish to age in their
homes. Falls in general are the leading cause of accidental mortal-
ity and morbidity among the elderly population [3,4] and stairs are
a significant cause of falls [1]. In fact, in the United States, the Neth-
erlands and the United Kingdom, steps and stairs are the single
most dangerous element in the home [1].

Biomedical researchers study the ways in which adverse events
happen on stairs, and aim to identify and predict the causes of
these events. One of the major hurdles involved in such research
ll rights reserved.
is the gathering of real stair data. Aside from the ethical difficulties
of recording stair usage in public or private spaces, there is a tech-
nical difficulty imposed by the rarity of adverse events. It is esti-
mated that on public staircases, a slip, stumble, trip, or other loss
of balance not resulting in a fall occurs once in 2222 stair uses,
while minor accidents such as falls occur only once in 63,000 stair
uses [5]. It is hypothesized that the labour intensive process of
manually identifying unusual events in stair video data can be
avoided with an automated system which is proposed herein.

It is assumed that the system will have access to a database of
stair events on a particular set of stairs, where each stair event con-
sists of a single person entering the stairwell and descending the
stairs. A stair event (or descent) is considered to be of two types,
normal and anomalous. In a normal stair event, the person des-
cends the stairs with no problems, correctly placing their feet on
steps without any loss of balance. We consider an anomalous event
to be one in which the person misses a step at some point in the
stair event. More obvious abnormal events, such as a person falling
down the stairs, will not be considered. A person can miss a step
either by completely overstepping, or by catching their heel on
the nosing of a step and slipping off onto the next lower step (a
slip). These are the most common anomalous events and account
for a combined 65% of all ‘‘gait incidents” on stairs [1] (followed
by stumbles (17%), balance loss(10%), other (8%)). The primary goal
of our system is to filter a large database, removing a large fraction
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of stair events which are sure not to contain anomalies. The
remaining data could be forwarded to a human for final analysis.
Therefore, while our system should miss as few anomalous events
as possible, we can afford a reasonable amount of false positive
anomalous events. It is assumed that only a single person is
descending the stairs at a time, a limitation that could be overcome
with multiple target tracking (such as by using the Bramble system
[6]). We only look at descents, as these present a significantly high-
er risk for adverse events (75% of stair falls causing injury occur
during descent [7]), and are of most interest to biomedical
researchers and stairwell designers.

This new system operates in five stages as shown in Fig. 2. Two
types of features are computed for each frame of video: foot
dynamics and overall body motion. The subject’s foot positions
are tracked using a mixed-state Bayesian sequential estimator with
an appearance model based on histograms of oriented gradients
(HOGs). Six features are derived from the locations of the feet: ver-
tical and horizontal velocities of both feet and the vertical and hor-
izontal distance between both feet. Body motion is computed as
the mean value of the optical flow [8] over the foreground region
obtained using an adaptive background subtraction technique.
The resulting feature vector consisting of the tracked feet features
and the mean flow features forms a time series over each stair des-
cent. A hidden Markov model is then trained to model the statisti-
cal progression of these feature vectors over time in normal stair
descents. A new stair descent is classified as normal or anomalous
by computing its likelihood under the hidden Markov model and
comparing it to a threshold.

2. Previous work

Relatively little work has been done to detect anomalous hu-
man motion in video. Lee and Mihailidis [9] detect the most severe
anomalous motion (falls) by thresholding the diameter and veloc-
ity of a background subtracted silhouette. McKenna and Nait-Cha-
rif [10] detect deviations from models of normal activities in a
home to detect unusual behaviors such as falls. Bauckhage et al.
[11] estimate pose by encoding a background subtracted silhouette
as a mapping onto a rectangular grid. A feature vector is generated
from a concatenation of the grid representations at consecutive
frames and a support vector machine is applied to perform binary
classification of normal and anomalous sequences of poses. This
innovative approach unfortunately requires error-free segmenta-
tions of people’s silhouettes and suffers from an inability to gener-
alize well to new subjects and gaits. The reason for this is that the
class of anomalous poses and motions is simply too large and var-
Fig. 1. The stairs (a) and the view
iable to model. Even with a significant amount of training data of
anomalous gait it is generally easy to consider additional cases
which are not represented within the training set. This is further
highlighted by the fact that each person’s individual gait is differ-
ent and thus what is considered normal gait for one person is
anomalous for another. This fact presents a major challenge to
detecting anomalous events across multiple subjects. In previous
work [12], we have shown that it is more challenging to detect
anomalous events on stairs for a person who is not represented
in the normal event training data. Medical studies have shown
[13] that gait is unique across individuals. In psychological studies
[14] people have been able to easily identify others by observing
only their gait.

As such, a significant amount of work exists in attempting to
identify people based on their gait. Niyogi and Adelson [15] detect
individual gait by tracking the progression through time of skele-
tons fitted to background subtracted silhouettes. Little and Boyd
[16] recognize people by computing periodic characteristic fea-
tures of optical flow. While significant research exists into detect-
ing individual gait [17–19] relatively little work exists on detecting
anomalous gait, particularly on stairs.

There is some work on detecting anomalous behavior in video
in the context of visual surveillance [20] or user modeling
[21,22]. However, these approaches use coarse features such as
positions and velocities of people within a scene and attempt to
characterise trajectories. A larger body of computer vision research
has looked into modeling the motion of the human body in fine de-
tail. Periodic motion of walking figures is analysed in [23] by com-
puting self-similarity of a segmented image region with itself over
multiple time scales. The Fourier transform of the resulting corre-
lations gives indications of the periodicity of the motion. The mo-
tion history (MHI) [24] is a descriptor of temporally localised
image changes. However, these works do not attempt to recognise
anomalous events and do not look at motion on stairs.

Little work has been done on characterising human motion on
stairs. Notable exceptions are work done on motion capture data
of people ascending and descending stairs, in which recovered
joint angles are mapped to a subspace that can be used for synthe-
sis [25]. However, this work does not use video and does not at-
tempt recognition of unusual events. Human gait on staircases
was analysed in [26] by fitting a skeletal model to the view-based
human form, and then modeling the joint angles as a dynamical
system. This was used to classify gaits such as walking, running
and descending stairs, but no work was done on recognising unu-
sual events within each of these motion types. An interesting study
in [27] used a camera mounted above a side-by-side public stair-
from the overhead camera (b).



Fig. 2. Overview of system. (1) A person’s silhouette in a video of a stair descent is extracted using adaptive background subtraction. Mean optical flow is computed over the
silhouette to compute the overall body motion and the person’s feet are tracked as they progress down the stairs. (2) An 8-feature time series is derived from the optical flow
and foot motion. (3) The likelihood of the sequence is computed given a trained hidden Markov model (HMM) and (4) compared to a threshold L� . (5) If the likelihood is below
a certain threshold the descent is classified as anomalous and otherwise normal.

1 Note that, in [36], the authors report that Gaussian smoothing in the gradient
computation significantly decreases performance on their detection task. In contrast,
we found that in our task Gaussian smoothing significantly improved foot detection.
Presumably this is because the smoothing operation removes texture both on the
stairs and on shoes.
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way and escalator to implement a prompting device that would
encourage people to use the stairs if they were about to use the
escalator. Background subtraction was used to determine if people
were using the escalator or the stairs, and the work also addressed
some issues of multiple people on the stairs. However, there is no
recognition of unusual events.

Of particular relevance to this paper is the subset of gesture
recognition work that uses hidden Markov models to classify
gestures. Other vision-based gesture recognition approaches clas-
sify gestures using multiple HMMs, where a separate HMM is
used to model each gesture (e.g. see [28–31]). Starner and Pent-
land showed that HMMs could be used to classify hand gestures
in video of American sign language [28]. Kapoor and Picard used
HMMs to detect head nods and shakes [32]. Brand et. al. derived
coupled HMMs and used them to classify Tai Chi gestures from
the tracked locations of hands in video [29]. In [31], Vogler et al.
used parallel HMMs to classify American sign language gestures
in 3D visual tracking data and different walking gaits from mo-
tion capture data. In all the above mentioned approaches sepa-
rate HMMs were used to model each gesture to be classified.
Each type of gesture is modeled by a single HMM trained on
that type of gesture. Classification then proceeds by computing
the likelihoods of the test data under all the HMMs and classify-
ing according to the HMM which assigns the highest likelihood.
Particle filters have been widely used in computer vision primar-
ily for the purpose of approximating the Bayesian density of the
position of an object throughout a sequence of images (see
[33,34,6,35] for examples).

3. Stair event classification

In this section, we detail the algorithms and techniques used
to model and classify the motion of people on stairs. Section 3.1
details a procedure to identify feet, model their motion and then
track them as they progress down the stairs using a Bayesian
Monte Carlo sampling method. Section 3.2 then outlines a sim-
ple background subtraction procedure used to identify a person
on the stairs, and how the motion of the person is quantified
by computing optical flow over the background subtracted re-
gion. Then in Section 3.3 we use the information gathered in a
hidden Markov model to classify stair descents as either normal
or anomalous.

3.1. Tracking feet

A person’s feet are tracked using a probabilistic Bayesian
sequential estimation technique. We estimate Pðxt j y1:tÞ, the distri-
bution over the positions of the two feet, xt ¼ fxl

t ; x
r
tg, given a se-

quence of observed data (images) y1:t ¼ fy1; . . . ytg. Assuming
conditionally independent observations and first order Markovian
state dynamics, we get the recursive Bayesian solution:
Pðxt jy1:tÞ / PðytjxtÞ
Z

xt�1

Pðxt jxt�1ÞPðxt�1jy1:t�1Þ dxt�1 ð1Þ

In order to solve this equation one must model the observation like-
lihood Pðyt j xtÞ, the probability of observing the object given a con-
figuration, and its dynamics Pðxt j xt�1Þ. In addition a suitable prior
Pðx1Þ must be specified to initialize the algorithm. We model the
appearance of feet using a histogram based representation of their
contours and derive an observation likelihood accordingly (Section
3.1.1). The dynamics of the feet is a mixed-state dynamical model
(Section 3.1.2). Tracking is initialized by specifying Pðx1Þ as a uni-
form distribution spatially over the top of the staircase. We approx-
imate the recursion in Eq. (1) using an importance sampling
technique (Section 3.1.3).

3.1.1. An appearance model of feet
The appearance of feet is modeled as a template histogram of

oriented gradients (HOG) [36]. This technique works by splitting
image windows into a grid of cells, and computing histograms of
the spatial gradient orientations in the image over each cell. The
combination of all the histograms for all cells provides a represen-
tation of the appearance of the feet. Spatial gradient information is
a more robust measure than color since it can, for example, ac-
count for differently colored or shaped shoes. Using histograms
of oriented gradients as the appearance representation provides
us a model of the contours of feet that is invariant to slight changes
in orientation, allows for non-rigid contours and provides a smooth
observation likelihood. These properties allow a small set of
hypotheses to represent the possible locations of an object. This
is particularly important for tracking methods, such as particle fil-
ters, that maintain multiple hypotheses.

We compute the HOG over an image window as follows. First,
the spatial gradients of the image are computed by convolving
the image with a derivative of a Gaussian filter. The resulting gra-
dients are normalized using L2 normalization followed by clipping
values above a maximum [36].1 Second, the image window over
which we are trying to compute the HOG is split spatially into a
3� 3 grid of cells. For each cell, Nh histogram bins are created, rep-
resenting spatial gradient orientations from 0 to 2p, where the ith
bin is for orientations in 2pi

Nh�1, i ¼ 0 . . . Nh � 1. Each pixel then submits
a vote for its gradient direction to the histogram for the cell it is lo-
cated in. Votes in neighboring bins are bilinearly interpolated to re-
duce aliasing. The number Nh of histogram bins used for matching
provides a control on the flexibility of changes in orientation of the
object to be matched. Similarly, the number of grid cells used pro-
vides a control on the spatial flexibility of the match.
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In order to compute the likelihood of a foot being present in an
image window given a foot location, xt (either left or right foot), we
need to compare the HOG of the image window, qc , to a reference
HOG, q�. We use a Bhattacharyya distance measurement given by
[37]:

D½q�; qc� ¼ 1�
XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
q�n; qc

n

p" #1
2

ð2Þ

Then, the observation likelihood is [38]:

Pðyt jxtÞ / e�kD2 ½q� ;qc
yt
� ð3Þ

where qc
y is the HOG derived from yt , and k is a scaling parameter

(we used k ¼ 50).
For our experiments histograms were computed over

21 � 21 pixel windows centered at the hypothesized foot location.
We used Nh ¼ 10 histogram bins, and discarded low amplitude
gradients. See Fig. 3 for an example HOG of a foot. Reference histo-
grams for left and right feet were computed from an independent
set of stair sequences, with manually annotated foot positions.
HOGs were computed for each frame, and averaged to produce
the final template histograms. Fig. 4 shows the log likelihood of a
match to the right foot using our method for each pixel in an exam-
ple image.

3.1.2. Dynamics
The dynamics of foot positions over a sequence is modeled by

the density Pðxt j xt�1Þ. A model of the foot dynamics is particularly
important when the appearance model fails. This occurs in our sys-
tem during virtually every stair descent when the knees and thighs
occlude the view of a foot during a step (see Figs. 9 and 8). An accu-
rate model of the dynamics of the feet allows us to infer their posi-
tion while they are not visible and predict where they will
reappear. During a stair descent the feet exhibit a number of differ-
ent motions (i.e. they are stationary while on a stair, accelerate
during a step and decelerate as the foot reaches the next step),
and a single dynamical model is not in general sufficient to capture
these different modes. It is preferable to specify a separate dynam-
ical model for each type of motion the feet can exhibit. Assuming N
motion types, we index the dynamics by i ¼ 1 . . . N, such that we
have N dynamical models. In fact, we are postulating a new set
of discrete-valued hidden states zt , where each state zt ¼ i corre-
sponds to the ith dynamics model. The state of the system is
now mixed [39,40], comprised a continuous component, xt , repre-
senting the left and right foot positions and a discrete component,
Fig. 3. An example of the histograms of oriented gradients computation over a foot wher
is the window around the foot and the corresponding 3 � 3 grid, (c) shows the horizontal
shows the final histogram representation where the orientations of all pixels in each grid
histograms each with ten orientation bins (from 0 to p) along the x-axis and the numb
discarded.
zt , representing the current dynamics mode. We represent this ex-
tended state as X ¼ fx; zg; x 2 R; z 2 f1; . . . ;Ng. The process density
is now given by pðXt jXt�1Þ ¼ pðxr

t ; x
l
t; zt jxr

t�1; x
l
t�1; zt�1Þ, where we

have used the fact that x represents the positions of both left and
right feet, xl and xr, respectively.

Several conditional independence assumptions are used to sim-
plify the dynamics. We assume that the dynamics modes specify
the joint velocities of the two feet, but that each foot moves inde-
pendently given this joint velocity. This assumption means that the
motion of the two feet are correlated, but that their positions are
not (e.g. the position of the left foot depends only on its position
in the previous time step, and on the velocity, but not on the posi-
tion of the right foot). This independence assumption will also re-
duce the complexity of our sampling approach detailed in the next
section. To accomplish this, we first assume that the two parts of
the state space, x and z, are only conditionally dependent within
the same time-slice, such that

PðXtjXt�1Þ ¼ Pðxt jzt ;Xt�1ÞPðztjXt�1Þ ¼ pðxtjzt ; xt�1Þpðzt jzt�1Þ

We then model the foot positions being coupled to the dynamics
modes through the velocity of the feet v ¼ fvr

x; v
r
y; v

l
x; v

l
yg, a four

dimensional vector giving horizontal and vertical velocity for each
(left and right) foot. Writing the temporal dynamics over the dis-
crete dynamics mode states, z, as a simple multinomial:
Pðzt ¼ i j zt�1 ¼ jÞ ¼ Tij, the dynamics is written as

Pðxt ; zt ¼ ijxt�1; zt�1 ¼ jÞ ¼
Z

vt

pðxtjxt�1; vtÞpðvt jzt ¼ iÞTij dvt

where pðvt j zt ¼ iÞ is a Gaussian mixture consisting of Nv Gaussians,
each with mixing proportion wik, mean lik and covariance Rik, for
k 2 1 . . . Nv

pðvt jzt ¼ iÞ �
XNv

k¼1

wikNðlik;RikÞ

Finally, we assume that each foot moves independently given the
mode dynamics, v, such that the process dynamics is factored as

pðxt jxt�1; vtÞ ¼ pðxl
tjxl

t�1; vtÞpðxr
t jxr

t�1; vtÞ ¼ pðxl
tjxl

t�1; v
l
tÞpðxr

t jxr
t�1; v

r
tÞ

where vr
t ðvl

tÞ is the right (left) foot velocity at time t. The two time-
slice Bayesian network (2TBN) for the model we use is shown in
Fig. 5, and encapsulates the conditional independence assumptions
used to simplify the dynamics.

Given the velocity, vt , then the dynamics of each foot is a linear
Gaussian model with additive noise, such that we have
e (a) is the original image with a 21 � 21 window highlighted over the right foot, (b)
gradients over the window, (d) shows the vertical gradients over the window and (e)
location are binned into the corresponding histogram. This shows the resulting nine
er of pixels in each bin on the y-axis. Pixels with small amplitude gradients were



Fig. 4. This figure shows the log likelihood that the 21� 21 image window centered at each pixel in the image matches the template HOG for the right foot (a) is the original
image, in (b) each pixel’s value is the log likelihood that the window centered at that pixel matches the template HOG for the right foot and (c) shows a 3D surface map of the
log likelihoods over a small window centered on the right foot.

Fig. 5. A two time-slice dynamic Bayesian network (2TBN) dependency graph of
the mixed-state dynamical system. The full dynamic Bayesian network is obtained
by repeating this slice for the number of time steps in the data.
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xk
t ¼ xk

t�1 þ vk
t þ k

where k ¼ fl; rg and k is zero-mean Gaussian noise with fixed
covariance C:

k �Nðk; 0;CÞ

To learn the parameters of this model, we first specify the fixed
covariance C of the sub-process noise, k. This restricts the learning
to only the dynamics in the Markov chain over the z variable and
the density pðv j zÞ.

The resulting relationship between the unobserved dynamical
states z1:t and the observed dynamical motion v1:t is a hidden
Markov model for which the algorithms for learning and inference
are well understood [41] (see Section 3.3 for a description of
HMMs). Given a training sequence of hand labeled foot positions
x�1:t ¼ fx�1; . . . ; x�t g, a corresponding sequence of dynamical motion
v�1:t ¼ fv�1; . . . ; v�t g is computed using the first order finite differ-
ences, v�t ¼ x�t � x�t�1. The parameters of the HMM, fT;w;l;Rg, are
those which maximize the likelihood of the foot position training
data. A single 10-state hidden Markov model was used with one
added regularization state with high covariance and low mixing
proportion. The HMM was trained on 60 (30 normal and 30 anom-
alous) stair descents. This data was withheld from our experiments
in Section 4.2. We used C ¼ diagðcÞwhere c ¼ 5 pixels. Fig. 6 shows
the behavior of the dynamical model for an example stair descent.
3.1.3. Particle filtering
Now that we have an appearance model of feet and dynamical

model of their motion on the stairs we can track their location
through a sequence of images using Eq. (1). We approximate this
equation using a variant of the Sampling Importance Resampling
(SIR) algorithm [42] closely related to the CONDENSATION
algorithm [33]. The SIR algorithm is a sequential Monte Carlo
(particle filtering) method for estimating probability densities
within Bayesian tracking (see [43] for a survey and tutorial of
particle filtering methods).

In standard SIR filtering the state of the system Xt at time t is
approximated using a finite set of samples fXðnÞt ;wðnÞt ;n ¼ 1; . . . ;Ng:

XðjÞt � PðXtjy1:t�1Þ �
X

n

wðnÞt�1PðXt jXðnÞt�1Þ ð4Þ

wðjÞt / Pðyt jX
ðjÞ
t Þ ð5Þ

where the weights wt are normalized to sum to one, the state Xt re-
fers to the configuration of the tracking target at frame t and
y1:t ¼ ðy1; . . . ; ytÞ represents a sequence of observations. In Sections
3.1.1 and 3.1.2, we specified the observation density Pðyt j XtÞ and
the state dynamics PðXt j Xt�1Þ. In our approach, we use a set of
samples over the mixed-state X ¼ fx; zg. Recall that x ¼ fxr; xlg is
the continuous-valued positions of both feet, while z is a discrete-
valued index of the dynamics mode. We propagate each sample
using the mode dynamics Tij ¼ pðzt j zt�1Þ first, followed by a sam-
pling of the velocity density pðv j zÞ, and finally, independent up-
dates of the particles for each left and right foot. Fig. 7 shows the
complete algorithm.

We use N ¼ 300 samples and a separate template appearance
model for each foot. Our algorithm is initialized by selecting ran-
dom sample sets with high spatial variance over the top of the
stairs fXðnÞt ;wðnÞt ;n ¼ 1; . . . ;Ng with equal normalized weights. The
weight of each sample is then set to be the likelihood that the foot
is observed at that sample wtðnÞ ¼ Pðyt jXðnÞt Þ and renormalize the
weights. The configuration of each foot at time t is estimated as
the mean configuration of its sample set fXðnÞt ;n ¼ 1; . . . ;Ng
weighted by the sample weights wðnÞt . After resampling (with
replacement) each sample is propagated independently through
the dynamics by inferring from the hidden Markov model a new
state of the dynamics z and velocity v given the previous states
of the dynamics. The samples are then resampled and the proce-
dure repeats for each frame in the video sequence. See Fig. 7 for
details of the iterative sampling algorithm. Fig. 8 shows the
initialization of the sample set and its progression through a



Fig. 6. This figure shows the dynamical state sequence z1:t and sampled translational motion v1:t from our dynamical model for an example stair descent. The top figure shows
the ground truth distances between the feet for an example descent and the figure below it is the corresponding most likely (Viterbi) path of dynamical states zt . The bottom
four figures show the ground truth translational motion of the feet v�1:t as a black line and the range of inferred motion v1:t at each state as sampled from the HMM (by taking
300 hundred samples at each timestep) in gray.
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sequence in which there is complete occlusion of one foot, and
where the multi-modal capability of the sampling technique is
prominent. Fig. 9 shows the resulting tracked position of both feet
through another sequence, again demonstrating the ability of the
tracker to maintain a lock on the feet through occlusion.

3.2. Optical flow features

Optical flow is used as a secondary representation of the motion
of a person, giving additional information about how the body of
the person is moving overall. We first segment out the person from
the background using an adaptive background subtraction tech-
nique, then we compute flow and take the mean over the fore-
ground region. We found the mean flow was sufficient to give
better recognition accuracy in our experiments, but that higher or-
der moments of the flow field did not significantly improve results.

We use a simple adaptive background subtraction technique
where we threshold the absolute difference between a new image
at time t, Itðx; yÞ and a’reference image’, Aðx; yÞ, containing only the
background. As this technique is very sensitive to changing back-
ground conditions, the reference image is updated after each frame
by taking a weighted average of all previous images in a sequence,
with a learning rate of ab:

Atðx; yÞ ¼ ð1� abÞ � At�1ðx; yÞ þ ab � Itðx; yÞ

In our experiments, we used ab ¼ 0:8 for the first 100 frames, then
0.0005 afterwards (set ad hoc to produce good background segmen-
tation on our data). This technique suffers from a number of factors,
the most significant of which are shadows and specularities. A num-
ber of methods exist which attempt to deal with these issues. These
include using difference in depth from stereo information to seg-
ment the background [44], multi-component systems [45], and for-
mulating probabilistic models of background pixels using mixtures
of Gaussians [46,47]. We opted instead, due to its simplicity and
good results, for a method where we perform a second round of
background subtraction on the result of the initial background sub-
traction, but in the hue channel of the HSV color space. We found
that this removed the majority of shadow pixels because the hue
is less sensitive to changes in brightness than the RGB color space.
Finally, we removed remaining noise by convolving with a gaussian
kernel and finding the largest connected component. See Fig. 10 for
an example.



Fig. 7. The sampling algorithm for tracking both feet.

Fig. 8. A number of interesting frames from an example stair descent sequence where tracking feet is challenging due to occlusions and a large misstep. This figure shows the
progression of the sample set used to track the right foot. The (x,y) location of each sample is shown as a white dot. The samples are initialized over a wide area in 1 but
quickly converge on the foot in 2. In 8–10, the foot becomes completely occluded by the right knee and the sample set diverges. In 11, the sample distribution is briefly
bimodal as the foot is found but eventually (12–14) all the samples return to the foot.
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We compute optical flow over the foreground region using the
method of Black and Anandan [8] as it is robust to multiple mo-
tions and outliers in the optical flow estimation. In this paper,
we use only the mean component of the flow by averaging flow
vectors over the foreground region. See Fig. 11 for examples of
optical flow. Computing dense, robust, flow in order to estimate
mean flow only is not strictly necessary and simpler techniques
could replace this method.



Fig. 9. A number of frames from another example stair descent where tracking feet is challenging. The resulting foot locations as tracked by our tracker are shown. The
tracked location of the left foot is shown as a white ‘‘X” and the tracker location of the right foot is shown as a white ‘‘+”.

Fig. 10. An example of our background subtraction (a) is the original image and (b)
is the resulting background subtracted image. Note: The tether attaching from the
person to the overhead track has been completely removed as background. Since
the tether is very thin, it is smoothed into the background as result of the Gaussian
smoothing step before using connected components.
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3.3. Event classification

Once we have extracted the foot positions and mean optical
flow features from an image sequence containing a stair descent
we can proceed to classify the descent as being normal or anoma-
lous. Note that this procedure is distinct from the foot tracking
method described in Section 3.1.2. We use the estimated mean
positions of the feet as computed with the method in Fig. 7 as input
features for event classification. We use eight features at each time
step during a stair descent: the 2 flow features from Section 3.2
and 6 features representing the configuration of the feet. These 6
features, derived from the tracked foot positions (Section 3.1),
are the horizontal and vertical instantaneous velocity of each foot
and the horizontal and vertical distance between the two feet (see
Fig. 12). The resulting feature vector forms a time series
fy1:t; y ¼ R8g representing a stair descent.

We use a single hidden Markov model (HMM), a probabilistic
temporal model fS;Y;R;Bg, where S is a finite set of states, Y is
a continuous observation space, R : S!S is a transition function
giving the probability of transitioning from state s at time t to state
s0 at time t þ 1, Tðs; s0Þ ¼ Prðs0 j sÞ and B : S! Y is an observation
function giving the probability of observing observation feature
vector y given state s : Bðs; yÞ ¼ Prðy j sÞ. The observation function
for a continuous space is parameterised using a full-covariance
Gaussian mixture model:

Pðyjs ¼ iÞ ¼
X

j

mjiNðy; sij;KijÞ ð6Þ

where set of observation vectors y are generated by j Gaussians
each with mixing proportion mj, mean sj and covariance Kj. Train-
ing an HMM consists of finding the parameters fR;Bg that maximize
the likelihood of a set of training data. This is done using a variant of
the Expectation Maximization algorithm [48] known as the for-
ward–backward algorithm or Baum-Welch algorithm [49]. See
[41,50] for an in-depth explanation of HMMs.



Fig. 11. Optical flow computation for an example stair descent. From top to bottom are the mean vertical and horizontal optical flow, original images and resulting optical
flow.
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We train the single HMM to recognise only normal walks,
and then we use it to compute the likelihood of a new sequence
given this normal walk model. If the sequence is, in fact, an
anomalous walk, we expect the likelihood to fall below some
threshold. The last step is therefore to specify this threshold.
We examine a method for doing this in the next section. We
train the HMM using the expectation maximization algorithm,
as implemented in the BNT toolbox [51]. We used 10 hidden
states with full-covariance Gaussian mixture emissions, and ini-
tialised the EM algorithm randomly. A single extra state with
high covariance and low prior, mixing proportion and transition
probabilities was added for regularization. The standard forward
algorithm is used to evaluate the likelihood of a new sequence
given a trained HMM and the likelihood is then normalized by
the sequence length. The number of hidden states was chosen
by evaluating the overall performance of the method when gen-
eralizing to new test subjects using different settings (see Sec-
tion 4.2).
3.4. Classification methodology

This section details the classification methodology for two sep-
arate classification experiments. Due to the variability of gait
across subjects it is important to validate the system by demon-
strating its ability to generalize to new people. Two distinct classi-
fication experiments were conducted to test: (1) how well the
system can classify new descents for people who are included in
the training set and (2) how well the system can classify descents
for people who are not included in the training set. While (2) is
most relevant to the final system, comparing (1) and (2) will reveal
the system’s sensitivity to individual gait. This paper will refer to
(1) as weak generalization and (2) as strong generalization. For the
purposes of this system it is preferable to have false positive anom-
alous stair descents (normal sequences classified as being anoma-
lous) rather than missed anomalous descents. A cost function is
incorporated in the classification procedure to give a higher cost
for missing anomalous descents.



Fig. 12. Features representing the configuration of the feet. From top to bottom are the horizontal velocity of the right foot, the horizontal velocity of the left foot, the vertical
velocity of the right foot, the vertical velocity of the left foot, the horizontal distance between the two feet and the vertical distance between the two feet.

2 We break ties by taking the largest value of L which reflects our preference to
obtain false positive anomalies rather than missed anomalies in the classification.
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For all experiments the likelihood, li, of a data sequence, yi
1:t , re-

fers to the log likelihood of the sequence given a hidden Markov
model, h, (as computed using the standard forward algorithm) nor-
malized by the sequence length t:

li ¼ 1
t

log pðsi
1:tjhÞ

The first step is to separate the available data into training and test
sets, ensuring only that the training set contains at least some normal
and some anomalous sequences. An HMM is then trained on only the
training data set, and a likelihood threshold is computed that will dis-
criminate between normal and anomalous sequences. This training
and threshold determination is done using a leave-one-out cross val-
idation procedure as follows. Each sequence, yi, in the training data is
left-out in turn, and the likelihood, li, of this left-out sequence is com-
puted given a HMM trained on all remaining training data (note, how-
ever, that the HMM is only trained on the normal sequences in this
training set). If the number of anomalous and normal training se-
quences are given by Na and Nr , respectively, then we compute a cost
for the training set that trades off the number of misses (anomalous
sequences classified as normal) with the number of false positives
(normal sequences classified as anomalous):

CostðLÞ ¼ 1
Nr

XNr

i¼1

dðli
; LÞ þ Cm

Na

XNa

j¼1

ð1� dðlj
; LÞÞ ð7Þ

where L is the likelihood threshold and dðp; qÞ is the discriminant
(threshold) function:
dðp; qÞ ¼
1 if p < q

0 otherwise

� �

The constant Cm gives the relative cost of a missed anomalous se-
quence over a false positive. In our experiments, we use Cm ¼ 3: a
miss is three times worse than a false positive. The threshold, L�,
is then chosen to be the value which minimizes the cost function2

L� ¼ arg min
L

CostðLÞ

This methodology is applied to both the strong and weak general-
isation experiments. For the strong generalisation, the test data is
all the data from a single subject. The training data is all the data
from all other subjects. Each of the strong generalization experi-
ments is repeated five times to give an average over different ini-
tialisations. The mean overall classification result of the five
classification runs is reported as the overall classification rate. The
mean normal and anomalous sequence classification rates over all
five classifications are also reported.

When testing weak generalisation, we need to split the data
into training and test sets. We do so by removing one normal se-
quence and half the anomalous sequences. We repeat this proce-
dure for each normal sequence, removing a random sample of
half the anomalous sequences each time. Again, this entire leave-
one-out procedure is repeated five times, and the classification rate
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we report is an average over all the normal sequences and sets of
anomalous sequences over all repetitions.

4. Experiments

In this section, the system is validated through conducting
experiments on a carefully collected unbiased data set. We display
classification results of the system and compare them to a couple
of simple baseline techniques.

4.1. Data collection

In order to validate the system a data set was collected consist-
ing of video sequences of people simulating stair descents. All sub-
jects were adults between the ages of 18 and 30, weighed under
225lbs (a limitation of the safety harness used), had no recent mus-
culoskeletal injuries and had no prior knowledge of the workings
of the system. The subjects descended the stairs in three sets of
events. In the first set, they descended the steps normally. In the
second they missed a step completely (an overstep). In the third
set they slipped off one step onto the next with one foot (a slip).
These subtle events are the among the most common anomalous
events on stairs [1]. More drastic events, such as trips and falls,
are significantly less challenging to detect. Although the visual
appearance of an untrained subject simulating an event on the
stairs may differ from a real event, we believe that qualitatively
the two events deviate similarly from normal events. Each subject
was recorded by simulating each type of stair descent twenty
times on an experimental staircase with four stairs in our labora-
tory (see Fig. 1(b)). A Point Grey Research Dragonfly 2TM camera
was mounted on the ceiling at a perpendicular distance of approx-
imately 300 cm from the nosing of the center step in the stairway.
The view from the camera is shown in Fig. 1. Image sequences
were recorded at 30 Hz. with a resolution of 320 � 240 pixels. In
order to prevent any injuries each subject wore a helmet, knee
pads and a safety harness tethered to an overhead track (see
Fig. 13). The experimental protocol was reviewed and approved
by the University of Toronto Research Ethics Board.

The start and end of each descent sequence from each subject
was manually annotated. The start of each descent was recorded
as the frame where either foot starts moving at the top of the stairs.
The end of each descent sequence was recorded as the first frame
where both feet have cleared the stairs and either touched the
Fig. 13. This figure shows the safety gear used during data collection. Each subject
wore a white hockey helmet and a safety harness tethered to an overhead track. The
safety harness is connected at the subject’s back to a tether. The tether connects to
an overhead track. The harness and tether arrest the subject’s motion in the event of
a fall. The subject is wearing kneepads under his trousers.
ground or left the view of the camera. The subjects were informed
which type of descent to perform and the descents were annotated
as normal or anomalous accordingly. From the data taken, subject
1 recorded one extra anomalous event (41 anomalous events) and
subject 2 recorded one less normal event (19 normal events).

In addition to the five person data set, another data set was re-
corded consisting of four subjects simulating the three types of
stair descents (normal, misstep and slip) without safety equipment
on the same experimental staircase. Each subject simulated each
type of descent at least 15 times. Ground truth foot positions were
obtained for 60 (30 normal and 30 anomalous) of these simulated
descents and these were used to train the dynamical model of the
foot tracker (Section 3.1.2) and used to compute the template his-
togram appearance models of the feet (Section 3.1.1).

4.2. Results

For all experiments we compiled a time series data set by com-
puting the optical flow features and foot-tracking features as de-
scribed in Section 3. Thus the results presented in this section
reflect not only the accuracy of our HMM based classification but
also that of the foot-tracking and optical flow techniques. In gen-
eral, the optical flow computation was found to be very robust.
The foot tracker correctly tracked the feet with high accuracy in
virtually every normal stair descent but occasionally failed while
tracking anomalous descents. It is far more challenging to track
feet in anomalous descents because the dynamics of the feet are
unpredictable and the feet move briefly at very high velocity (see
Figs. 9 and 8 for examples). Even though most anomalous descents
are tracked accurately, this is not of critical importance since the
HMM should classify any descent as anomalous in the event that
tracking fails.

Three separate types of experiments were performed. The first
type of experiment tested weak generalization. This refers to test-
ing the ability to be able to classify new examples of stair descents
from a person who is represented in the training set. These exper-
iments are labeled Ti-WEAK, where i 2 f1;5g is the number of sub-
jects in the training set. In the second type of experiment, STRONG,
we test strong generalization across people. For this experiment
we train the HMM and set the threshold using data from all sub-
jects except one. The classification rate is then evaluated on the
data from the remaining subject. It is this experiment that is the
most relevant to our final system: we want to be able to flag an
anomalous event occurring for a never before seen person
descending the stairs. However, it is also the most difficult: the
types of normal motion exhibited by the unseen person will not
be modeled by the HMMs and will more often be flagged as anom-
alous. See Section 3.4 for a more in-depth explanation of the strong
and weak generalization classification procedures. The classifica-
tion results are presented in Table 1. Fig. 14 demonstrates how
the cost parameter (Cm) of the likelihood threshold cost function
(Eq. (7)) can be used to trade off correctly classified anomalies with
false positive anomalies on the strong classification experiment.

4.3. Baselines

This method was compared to two baselines. First, classification
was done based on a threshold on the number of zero-crossings of
the distance between both feet in the vertical direction. This is
counting the number of distinct times the two feet pass each other
while descending the stairs and is related to the number of steps
taken during the sequence. Sequences containing slips or oversteps
should contain less distinct steps. All sequences were smoothed
using a simple Gaussian filter in order to remove noise resulting
from the tracking process. A threshold of five was selected, which
is the threshold which gave the maximum overall classification



Table 1
HMM classification results

Exp. type Test subj. Missed anom. (%) False +ve anom. (%) Overall correct (%)

T1-WEAK 1 0.18 3.75 98.08
2 11.3 17.89 85.53
3 0 5.0 97.5
4 3.5 10.0 93.25
5 2.06 3.75 97.94
Avg. 3.41 8.08 94.46

STRONG 1 0.08 1.0 99.02
2 10.0 10.53 89.83
3 1.0 13.00 95.00
4 5.56 5.00 94.44
5 12.5 5.00 90.00
Avg. 5.83 6.96 93.49

T5-WEAK 1,2,3,4,5 7.28 10.1 92.72

Fig. 14. This figure demonstrates how the cost parameter (Cm) of the likelihood
threshold cost function (Eq. (7)) can be used to trade off correctly classified ano-
malies (hits) with false positive anomalies. This parameter imposes a bias in the
classification procedure by adding a relative cost for missing anomalies. Plotted on
this ROC curve are the percentage of correct anomalies vs. the percentage of false
positive anomalies (the number of incorrectly classified normal sequences) for di-
fferent settings of the cost parameter on the average strong classification result for
all subjects. For the results in Table 1 Cm ¼ 3 was used.
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performance across all subjects. Sequences with less than or equal
to five zero-crossings were classified as anomalous. The results are
shown in Table 2.

The second technique is to count the zero-crossings of the
derivative of the distance between the two feet in a stair descent
sequence. These zero-crossings indicate when a new step starts
and a previous one ends. Again the sequences were smoothed
using a Gaussian filter and a threshold of five was used, which is
the threshold which gave the maximum overall classification per-
Table 2
Results of classifying sequences based on the number of zero-crossings of the vertical
distances between feet in each sequence (counting the number of times the feet
cross)

Test subj. Missed anom. (%) False +ve anom. (%) Overall (%)

1 20.0 0 86.67
2 2.5 26.32 89.83
3 20.0 5.0 93.33
4 47.5 0 68.33
5 20.0 0 86.67

Avg. 22.0 6.26 84.97
formance across all subjects. Sequences with less than or equal to
five zero-crossings were classified as anomalous. See Table 3 for
results.

5. Discussion

The results presented in Table 1 and Fig. 14 lead to some inter-
esting observations. The strong classification rates for subjects 1, 3
and 4 are very promising at 99.02%, 95% and 94.44%, respectively.
For subject 1 four of the five strong classification runs were 100%
correct. Subjects 3 and 4 similarly had very good results. The clas-
sification accuracy for subject 2 was somewhat lower, but was
actually better for the strong generalization (89.83%) than the
weak generalization (85.53%). It was observed that this subject
exhibited very subtle anomalous events. Particularly some of the
heel slip events were difficult even for the authors to visually iden-
tify. It is believed that the subtlety of these events resulted in high
likelihoods of being normal given the HMM. This can be observed
in the ROC curve in Fig. 14 where even with a very strong bias for
correctly classifying anomalous events approximately 4% of these
events were missed.

It is possible that temporally segmenting stair events into indi-
vidual stair sequences, and then attempting to identify anomalous
single steps on stairs may improve this result, and forms an avenue
for future research.

One issue which should be discussed is the inclusion of safety
equipment in our experiments. While the use of safety equipment
was necessary to protect the test subjects, it may have altered the
results of our experiments. The knee pads and helmet did not likely
affect our results. However, the tether between the safety harness
and the overhead track noticeably altered the optical flow estima-
tion and background subtraction. We conducted the same experi-
ments with four test subjects from our lab, without using any
safety equipment. For these subjects the average weak generaliza-
tion (T1-WEAK) classification rate was 92.07% (compared to 94.46%
in our results section) and the average strong generalization
Table 3
Results of classifying sequences based on the number of zero-crossings of the
derivative of the vertical distances between feet in each sequence (counting the
number of steps)

Test subj. Missed anom. (%) False +ve anom. (%) Overall (%)

1 17.5 20.0 81.67
2 20.0 47.37 71.19
3 22.5 10.0 81.67
4 7.5 10.0 91.67
5 27.5 15.0 76.67

Avg. 19.0 20.47 80.57
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(Strong) classification rate was 93.42% (compared to 93.49%). The
difference between these results and those presented in our results
section implies that the use of safety equipment does not make a
significant difference in the results.

There are a number of limitations to this system. The need to
track feet as they descend the stairs presents a number of issues.
First, classification is very difficult if the feet are occluded during
a stair descent. This could be the case, for example, if multiple peo-
ple descend the stairs simultaneously. Also, the system will flag as
anomalous any sequence where the appearance model of the foot
tracker fails. While this appearance model appears robust in our
experiments, it is possible to think of situations where it will not
accurately model the feet. This will happen whenever a subject’s
feet do not share the round contours of typical shoes (e.g. with bare
feet, especially pointy shoes, or oddly shaped shoes such as fluffy
slippers) or when the contours are not easily recognizable because
the shoes share the same color as the stairs. In a situation where
subjects will likely descend the stairs on bare feet it would be per-
tinent to create a separate appearance model to model bare feet.
The system would then have to detect wether the subject is wear-
ing shoes or is on bare feet.

The framework of our system is such that in the event that any
component fails during a descent, the sequence will be flagged as
anomalous (since the HMM will assign the descent a very low like-
lihood of being normal). This is desirable as we have a preference
for generating false positive anomalous sequences as opposed to
missed anomalous sequences.

Future work will focus on extending the current system so that
it runs in real-time, detecting anomalous events as they occur. This
will necessitate the use of a less computationally intensive optical
flow estimation technique and a faster C++ based implementation
of the particle filter (the current implementation is in Matlab).
Classification can be performed by computing the likelihood under
the classification HMM at each time step and comparing it to a
threshold. Such a real-time system could be used, for example, in
the home of an elderly person as part of a system to notify medical
staff in the event of an emergency.
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